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Abstract

A common approach for the determination of Slow Crack Growth (SCG) parame-
ters are the static and dynamic loading method. Since materials with small Weibull
module show a large variability in strength, a correct statistical analysis of the
data is indispensable. In this work we propose the use of the Maximum Likelihood
method and a Baysian analysis, which, in contrast to the standard procedures, take
into account that failure strengths are Weibull distributed. The analysis provides
estimates for the SCG parameters, the Weibull module, and the corresponding con-
fidence intervals and overcomes the necessity of manual differentiation between inert
and fatigue strength data. We compare the methods to a Least Squares approach,
which can be considered the standard procedure. The results for dynamic loading
data from the glass sealing of MEMS devices show that the assumptions inherent
to the standard approach lead to significantly different estimates.
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1 Introduction

Subcritical crack growth is a well known phenomenon for a large variety of
glass and ceramic materials. A widely used empirical relation models the stress
intensity at the crack tip and the rate of crack growth by a simple power law
(Munz and Fett, 2001). The model covers slow crack growth rates which are
most interesting for lifetime prediction:

v = A
(

KI

KIC

)n

(1)

with v representing the crack growth rate, KI

KIC
the ratio of actual and critical

stress intensity at the crack tip and the material and environmental depen-
dent slow crack growth parameters (SCG) A and n. The determination of the
SCG parameters of structural glass and ceramic components is therefore an
essential part in assessing the reliability of industrial products. Various meth-
ods to determine these parameters exist, which can be related to two different
approaches.

The double torsion, double cantilever and compact tension method count among
the first approach. It uses special test samples with artificially induced macro-
scopic cracks, and allows for a relatively comfortable and direct —mostly
optical— observation of the crack propagation. The drawback of this group of
methods is, besides the need for special test samples and equipment, the fact
that macroscopic cracks might show a different SCG behavior than natural
microscopic flaws.

The second approach makes use of the fact that material subject to subcritical
growth of initial defects shows time dependent strength (Munz and Fett, 2001).
This property consequently leads to finite lifetimes in tests under static loading
conditions:

tf = Bσn−2
i σ−n

[
1−

(
σ

σi

)n−2
]

(2)

The time to failure is denoted by tf , B contains some fracture mechanical
quantities including A, σ is the applied load, and σi the inert strength. In
tests under dynamic loading conditions the fracture strength is dependent on
the applied loading rate

σn+1
o = Bσn−2

i σ̇(n + 1)

[
1−

(
σo

σi

)n−2
]

, (3)

where σo denotes the characteristic fracture strength, σ̇ the loading rate in
the dynamic loading test. Both methods are efficient in the determination of
the dependency in (1) using samples with natural microscopic defects. They
are often applied to determine the SCG parameters of glasses and ceramics as
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Fig. 1. The left plot shows the dependency (3) between loading rate σ̇ and char-
acteristic failure strength σo with asymptotes (5). For materials with small Weibull
parameter it can be hard to localize the plateau region from experimental data as
shown by the right plot (RB-data, see Sec. 4 for details).

they overcome the mentioned drawbacks of the above approach. The analysis
of both, static and dynamic loading experiments, simplifies the SCG behavior
of the material assuming the power law relation in (1). In principle one needs
to take into account all three stages operant in ceramics and glasses as well as
the threshold stress intensity below which no SCG behavior can be observed.
In comparison to dynamic configurations static loading tests provide more
lifetime relevant results since they are less affected by the stages two and
three of the SCG (Sudreau et al., 1994). The ’lifetime tests with modified
evaluation’ given by Fett et. al. does not require any assumption on the SCG
law (Munz and Fett, 2001). However, to use this method one needs to know
the inert strength and lifetime distributions and one has to ensure that both
are determined by the same flaw distribution. Especially for tests that have
to be applied on device level this can be difficult to ensure.

In this paper we focus on the analysis of dynamic loading measurements (3)
comparing several methods to determine the SCG parameters when strengths
are Weibull distributed. Model (2) for static loading experiments is equiva-
lent and the analysis can be performed in the same manner — thus retaining
all advantages as described in the following 1 . We present dynamic tensile
loading measurements of the glass sealing of Micro Electro Mechanical Com-
ponents. Figure 1 schematically depicts relation (3), the according quantities
can be determined using relatively simple mechanical test methods and the
measurements can be performed in an industrial environment. For details on
the experimental setup we refer to Glien et al. (2004).

Being a probabilistic quantity the strength of ceramics and glasses can show
large scattering. Therefore, a reasonable amount of samples has to be mea-
sured and a correct statistical analysis needs to be conducted. Most often the

1 Thanks to the referee for pointing this out.
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examined strength data σf are Weibull distributed:

σf ∼ WB(σf |σo, m) = m σo
−mσf

m−1e−(
σf
σo

)
m

, (4)

where σo denotes the characteristic fracture strength and the Weibull mod-
ule m describes the amount of variation. The smaller the Weibull module of
the considered material, the more important an accurate statistical analysis
becomes. An accurate analysis needs to account for the Weibull distribution
and therefore inhibits the use of standard methods. Since m is in good ap-
proximation independent of the loading rate equation (3) can be simplified by
regarding only the two asymptotes shown in Figure 1

log σo(σ̇) =


[

1
1+n

log σ̇ + log D
]

for log σ̇ ≤ σ̇t

σ̇t

1+n
+ log D for log σ̇ > σ̇t

, (5)

where σ̇t denotes the intersection of the two asymptotes

σ̇t =
σ3

i

B(N + 1)
with B =

Dn+1

n + 1
σ2−n

i . (6)

We propose to use the Maximum Likelihood method which explicitly takes
into account the Weibull distribution of the strengths. The standard proce-
dure C 1368–01 given by (ASTM, 2001) uses a Least Squares fit which leads
to significantly different results. In a further step we describe how a Bayesian
analysis provides the opportunity to fit the measured data to the entire model
(5). This method liberates us from the need to exclude data from the plateau-
region where inert strength is observed, and also yields exact confidence in-
tervals that all other methods fail to provide. As the implementation of those
common statistical methods is relatively tedious we provide a MatLab 2 code
at www.tuebingen.mpg.de/∼tpfingst/FBMCode.zip.

2 Statistical parameter-estimation

In the following section we introduce the basic concepts for statistical param-
eter estimation which we use to analyze the experimental data. We start with
a closer look at Maximum Likelihood estimations and relate them to Least
Squares fits which are often used in SCG experiments due to their simplic-
ity. We proceed describing a Bayesian analysis that not only delivers point
estimates of parameters, but also provides us with confidence intervals.

2 MatLab is a trademark of The MathWorks, Inc.
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2.1 Maximum Likelihood and Least Squares

Let us assume that some quantities y and x are dependent via a mapping f

y(x) = f(x; θ1, θ2 . . . ) (7)

and one tries to determine the parameters θ1, θ2 . . . empirically by measuring
N samples D = {x1, y1, . . . xN , yN}. Due to measurement uncertainty and vari-
ations in test samples the measurements are corrupted. Thus the observations
yi are distributed according to the specific scattering mechanism

y ∼ p(x|f, θ) , (8)

where all parameters are collected in a vector θ. In SCG experiments, for
example, the failure strengths are Weibull distributed around σo as given in
eq. (4).

The Maximum Likelihood method (see e.g. Duda et al. (2001)) uses the dis-
tribution in (8) to find the most plausible parameters by maximizing the
Likelihood L(θ) which is by definition the probability of observing the data
under the condition that the parameters θ are known

L(θ) = p(D|f, θ) . (9)

The maximization can be performed using standard algorithms such as con-
jugate gradient ascent (Press et al., 1986, chap. 10.6).

The Maximum Likelihood method reduces to a Least Squares fit when the
noise is Normal, i.e.

y = f(x; θ1, θ2 . . . ) + ε with ε ∼ N (0, σ2
Noise) . (10)

The residuals εi = yi − f(xi; θ1, θ2 . . . ) are then Gaussian variables and the
Likelihood is a product of Gaussian distributions

L(θ) =
N∏

i=1

p(yi, xi|f, θ) =
N∏

i=1

N
(
εi, σ2

Noise

)
. (11)

One can easily show that in this case the Maximum Likelihood solution is
given by a Least Squares fit by considering the logarithm of the Likelihood

logL(θ) = −N

2
log(2πσ2

Noise)−
1

2σ2
Noise

(
N∑

i=1

ε2
i

)
(12)

which is maximized when the sum of squared residuals (rightmost term) is
minimal. The Least Squares fit therefore corresponds to the implicit assump-
tion that the observed quantity is corrupted by Normal noise.
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2.2 Bayesian Analysis and Markov Chain Monte Carlo sampling

The Maximum Likelihood method and the special case of Least Squares fits
estimate a sensible set of parameters but fail to provide a notion of uncertainty
that remains after the experiment. Bayesian theory, in contrast, enables us to
use the data to update our knowledge about the parameters and quantifies
the remaining uncertainty. For details we refer to standard literature such as
(Duda et al., 2001; Jaynes, 2003).

Before conducting any experiment, we always have some vague knowledge
about the parameters θ, which we code in a prior distribution po(θ). Here
we use uninformative priors for all parameters that only constrain them to
physically meaningful values. Using Bayes’ rule we can formally compute what
we learn about the parameters by exploiting the measured data D:

p(θ|D) =
p(D|θ)po(θ)

Z
(13)

where p(D|θ) is the likelihood L(θ) from (9) and Z denotes the normalizing
constant

Z =
∫

p(θ|D) dθ . (14)

The so-called posterior distribution p(θ|D) — the probability distribution of θ
given the data — contains all information we have about the parameters. All
quantities of interest 〈g〉 such as expected values or variances of the parameters
θ can be calculated according to

〈g〉 = Ep(θ|D) [g(θ)] =
∫

p(θ|D) g(θ) dθ . (15)

Unfortunately the integrals (14) and (15) cannot be calculated analytically for
most models, but Markov Chain Monte Carlo Sampling (MCMC) yields good
approximations that are guaranteed to converge. For excellent introductory
texts on MCMC see MacKay (2003) and Neal (1993). The idea of sampling
methods is to approximate the integrals in (15) by sums over M samples θn

from the posterior distribution:

〈g〉 =
∫

p(θ|D) g(θ) dθ ≈
M∑

n=1

g(θn) where θn ∼ p(θ|D) . (16)

For M →∞ the approximation approaches the integral and for finite sample
sizes good estimates can be obtained. We draw the samples (θn)n=1...M from
the posterior distribution using the Metropolis-Hastings Method.

The Metropolis-Hastings Method constructs a Markov Chain with p(θ|D) be-
ing its equilibrium distribution rather than drawing independent samples from
p(θ|D). Starting at some θ1, in each step n a proposal for a following chain
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link θn+1 is drawn from a proposal distribution Q(θn, θn+1) and is accepted if
the ratio

a =
p(θn+1|D) Q(θn, θn+1)

p(θn|D) Q(θn+1, θn)
(17)

exceeds one; if a ≤ 1 it is accepted with probability a. It can be shown that
for all positive Q the probability of θn approaches its equilibrium. A closer
look at (17) shows that the normalizing constant Z cancels out in the ratio
a. Thus we only need to be able to calculate p(D|θ) and po(θ). As a proposal
distribution we choose a Gaussian distribution

Q(θ, θ′) =
1√

2π|Σ|
e(θ−θ′)T Σ−1(θ−θ′) (18)

with diagonal covariance matrix Σ that we can adjust to obtain optimal con-
vergence rates. Note that for this just as for other symmetric proposal func-
tions Q cancels in the ratio (17). MacKay (2003, chap. 29) provides a de-
tailed description including a short pseudocode. Details on the convergence of
Markov Chains are given by Cowles and Carlin (1996).

3 Assessment of SCG parameters

In the preceding section we have described the concepts of Least Squares,
Maximum Likelihood and Bayesian Analysis in general. In the following we
relate these common statistical methods to the determination of SCG parame-
ters. We describe the procedure according to the standard C 1368–01 (ASTM,
2001) and compare it to the Maximum Likelihood solution. Furthermore we
show how a Bayesian Analysis puts aside the need to discard data in the range
of inert strength and provides confidence intervals to all parameters.

3.1 Standard procedures

Several different techniques to estimate the SCG parameters exist that greatly
vary in simplicity. All methods have in common that they require the loading
rates to lie below the region where inert strength is approached — according
to (5) log σ̇ is required to be below σ̇t. The logarithm of σo is then simply a
linear function of the log loading rate with slope 1

n+1
and axis intercept log D.

The arithmetic mean method (AMM) uses the mean failure stress at given
stress rates in combination with a Least Squares fit to obtain slope and axis
intercept. In the individual data method (IDM) the fit is done directly on all
data without preprocessing. A Monte Carlo simulation is presented by Ritter
(1981, 1979) which uses a method similar to the AMM but replacing the mean
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by the median failure stress. Other methods are the Weibull median, median
deviation, homologous stress, bivariant, and trivariant methods (Choi et al.,
1997).

A comparison in Choi et al. (1997) shows that IDM is to be preferred to AMM.
IDM is also the standard given by (ASTM, 2001). We therefore compare the
methods proposed in this work to IDM as a baseline procedure.

3.2 Maximum Likelihood Method

As shown in the previous section the Least Squares fit applied by the standard
procedures such as IDM does not reflect that the failure strengths σf are
Weibull distributed. We therefore use a Maximum Likelihood Method (MLM),
also restricting the data to the part below inert strength.
Note that Maximum Likelihood is a common procedure when it comes to fit
the parameters of a single Weibull distribution to data (Gross et al., 1996),
the MLM which we present here is used to find the SCG parameters n and D
as well as the Weibull module m.

3.3 Full Bayesian Analysis

While the MLM overcomes the implicit assumption of normal noise one still
faces the problem that (log) loadings rates have to be restricted to values below
σ̇t. It can be very hard to clearly ascertain the unknown σ̇t and results may
depend on its choice. We propose to use the Full Bayesian Analysis (FBM) as
given in Section 2.2 to find all parameters n, D as well as m and σ̇t including
the corresponding confidence intervals. We estimate the parameters as the
medians of the respective posterior distributions and state 95% confidence
intervals bounded by the 2.5 and 97.5 percentiles.

4 Results and Conclusions

In the following we present the results of the proposed methods on two exper-
imental data sets. The RB-data represents dynamic tensile loading measure-
ments we did on the sealing of Micro Mechanical Components, the GS-data
was taken from Gross et al. (1996). Figure 2 shows the data together with the
predicted σo given by FBM and Table 1 summarizes the results of all meth-
ods. Note that in the RB-data we had to discard all measurements beyond
loading rates of 102 MPa/s—for IDM and MLM— due to the fact that the
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Fig. 2. Results for the data sets RB-data (left) and GS-data (right). Experimental
data (◦) together with the median σo predicted by FBM (−) and a 95% confidence
interval (· · · ) are shown. FBM detects where inert strengths are observed; the start
of the plateau area is indicated by (--). Note that the RB-data shows a pronounced
saturation region, while for the GS-data the plateau is correctly found to lie to the
right of the measurements.

inert strength might have been observed there. The GS-data apparently does
not attain this region.

The first striking fact is that the IDM prediction for D lies off the confidence
intervals in both cases. This discrepancy reflects the deviation of the Weibull-
scattering from IDMs assumption of Normal noise while n is only slightly
affected. The MLM predictions do not differ significantly from the FBM.

When applying dynamic or static loading experiments one has to make sure
that the simplification introduced by (1) is justified when using the SCG
parameters for lifetime prediction. Once this is clarified a correct Bayesian
treatment of the data is to be favored over the traditional IDM method
and the MLM. When using IDM on dynamic loading data one has to ad-
ditionally estimate the Weibull module m in a separate Weibull analysis
for a fixed loading rate. Furthermore the simplification of Least Squares is
unnecessary now that powerful computers are widely available. MLM gives
results that are comparable to those of FBM but still requires constrain-
ing the loading rates in a preprocessing stage and confidence intervals are
not automatically obtained. We provide the code for the FBM and MLM
method at www.tuebingen.mpg.de/∼tpfingst/FBMCode.zip which makes their

RB IDM MLM FBM 95% conf.i.

D 85.8 106.0 105.8 [96.4, 115.7]

n 15.5 18.5 22.6 [12.8, 37.9]

m — 2.50 2.59 [2.26, 2.97]

GS IDM MLM FBM 95% conf.i.

D 222 268 247 [229, 268]

n 11.2 11.9 11.7 [7.5, 17.4]

m — 3.05 2.98 [2.54, 3.48]

Table 1
Results of the compared methods. On the RB-data (left) MLM and IDM were run
on the data for loading rates below 102MPa/s while the complete GS-data (right)
was used for all methods.
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use straightforward.
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